深度学习常用数据集介绍与下载(附网盘链接)

 

摘要

这篇博文总结了博主收集的深度学习常用的数据集,包含常用的分类、目标检测及人脸识别任务,对每个数据集给出了简要介绍、官网下载网站以及公众号获取的关键字。因为有的数据集较大,官网的下载速度可能比较慢,为了方便大家管理,这里我将其整理到了个人公众号平台中,可通过搜索“AI技术研究与分享”关注公众号,并在后台回复各数据集关键字即可获取网盘链接。数据集文件均为官方网站下载,仅用于学习交流,博主会持续更新,欢迎关注。


目录

摘要

1. 分类数据集

数据集:MNIST

数据集:CIFAR-10

数据集:Fashion-MNIST

数据集:Imagenet

2. 目标检测数据集

数据集:MS-COCO

数据集:PASCAL-VOC

数据集:BDD100K

数据集:Open-Images

3. 人脸识别数据集

数据集:CASIA-WebFace

数据集:PubFig

数据集:CelebA

数据集:ColorFeret

数据集:MTFL

数据集:FaceDB

数据集:LFW

数据集:Person identification in TV series

数据集:CMUVASC-PIE

数据集:CASIA-FaceV5

数据集:The CNBC Face Database

数据集:IMDB-WIKI

数据集:FDDB

数据集:Caltech-10K-WebFaces

数据集:JAFFE

数据集:AFLW


1. 分类数据集

数据集:MNIST

手写数字数据集,包含一组60,000个示例的训练集和一组10,000个示例的测试集。

官网地址

http://yann.lecun.com/exdb/mnist/

关键字(建议复制)Mnist

数据集CIFAR-10

包含了10个类别的60,000个图像(每个类在上图中表示为一行)。总共有50,000个训练图像和10,000个测试图像。

官网地址

http://www.cs.toronto.edu/~kriz/cifar.html

关键字(建议复制)CIFAR-10

数据集Fashion-MNIST

包含60,000个训练图像和10,000个测试图像。类似MNIST的时尚产品数据库。

官网地址

https://github.com/zalandoresearch/fashion-mnist

关键字(建议复制)fashion-mnist

数据集Imagenet

Imagenet数据集有1400多万幅图片,涵盖2万多个类别,关于图像分类、定位、检测等研究工作大多基于此数据集展开。

官网地址

http://www.image-net.org/about-stats

关键字(建议复制)ImageNet

 

2. 目标检测数据集

数据集MS-COCO

COCO是一个规模大且丰富的物体检测,分割和字幕数据集。330K图像,80个物体类别,每幅图像5个字幕,250,000个有关键点的人。

官网地址

http://cocodataset.org/

关键字(建议复制)MS-COCO

数据集PASCAL-VOC

PASCAL VOC挑战赛是视觉对象的分类识别和检测的一个基准测试,提供了检测算法和学习性能的标准图像注释数据集和标准的评估系统,包括20个目录。

官网地址

http://host.robots.ox.ac.uk/pascal/VOC/

关键字(建议复制)PASCAL-VOC

数据集BDD100K

自动驾驶常用大型多样化数据集,标注超过100,000张图像,类别包含公共汽车,行人,自行车,卡车,小汽车,火车和骑手等,用于目标检测、全帧分割等。

官网地址

http://bdd-data.berkeley.edu/

关键字(建议复制)BDD-100K

数据集Open-Images

Open Images是一个包含近900万个图像URL的数据集。这些图像已经用数千个类别的图像级标签边框进行了注释。

官网地址

https://storage.googleapis.com/openimages/web/index.html

关键字(建议复制)Open-Images

 

3. 人脸识别数据集

数据集CASIA-WebFace

包含了10575 个人的494414 张图像。CASIA-webface数据库,里面包含了10000个人,一共50万张人脸图片,均来源于网络。

官网地址

http://en.findeen.com/casia_webface.html

关键字(建议复制)CASIA-WebFace

数据集PubFig

哥伦比亚大学的公众人物脸部数据集,包含有200个人的58k+人脸图像,主要用于非限制场景下的人脸识别。

官网地址

http://www.cs.columbia.edu/CAVE/databases/pubfig/

关键字(建议复制)PubFig

数据集CelebA

香港中文大学汤晓鸥教授实验室公布的大型人脸识别数据集。该数据集包含有200K张人脸图片,人脸属性有40多种,主要用于人脸属性的识别。

官网地址

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

关键字(建议复制)CelebA

数据集ColorFeret

包括了一个通用人脸库以及通用测试标准,它已经包含了1000多人的10000多张照片,每个人包括了不同表情,光照,姿态和年龄的照片。

官网地址

https://www.nist.gov/itl/iad/image-group/color-feret-database

关键字(建议复制)ColorFeret

数据集MTFL

该数据集包含了将近13000张人脸图片,均采自网络。

官网地址

http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html

关键字(建议复制)MTFL

数据集FaceDB

包含了1521幅分辨率为384x286像素的灰度图像。每一幅图像来自于23个不同的测试人员的正面角度的人脸。

官网地址

https://www.bioid.com/About/BioID-Face-Database

关键字(建议复制)FaceDB

数据集LFW

为了研究非限制环境下的人脸识别问题而建立的。这个数据集包含超过13,000张人脸图像,均采集于Internet。为了研究非限制环境下的人脸识别问题而建立的。这个数据集包含超过13,000张人脸图像,均采集于Internet。

官网地址

http://vis-www.cs.umass.edu/lfw/

关键字(建议复制)LFW

数据集Person identification in TV series

该数据集所选用的人脸照片均来自于两部比较知名的电视剧,《吸血鬼猎人巴菲》和《生活大爆炸》。

官网地址

https://cvhci.anthropomatik.kit.edu/~baeuml/publications/semi-supervised-learning-with-constraints-for-person-identification-in-multimedia-data/

关键字(建议复制)PITVS

数据集CMUVASC-PIE

CMU PIE人脸库建立于2000年11月,它包括来自68个人的40000张照片,其中包括了每个人的13种姿态条件,43种光照条件和4种表情下的照片。

官网地址

http://vasc.ri.cmu.edu/idb/html/face/index.html

关键字(建议复制)CMUVASC-PIE

数据集CASIA-FaceV5

该数据集包含了来自500个人的2500张亚洲人脸图片。

官网地址

http://biometrics.idealtest.org/dbDetailForUser.do?id=9

关键字(建议复制)CASIA-FaceV5

数据集The CNBC Face Database

该数据集采集了200个人在不同状态下(不同的神情,装扮,发型等)的人脸照片。

官网地址

http://wiki.cnbc.cmu.edu/Face_Place

关键字(建议复制)Face-Place

数据集IMDB-WIKI

IMDB-WIKI人脸数据库总共523,051张人脸数据库,每张图片都被标注了人的年龄和性别,对于年龄识别和性别识别的研究有着重要的意义。

官网地址

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

关键字(建议复制)IMDB-WIKI

数据集FDDB

FDDB是UMass的数据集,被用来做人脸检测(Face Detection)。这个数据集比较大,比较有挑战性。

官网地址

http://vis-www.cs.umass.edu/fddb/index.html

关键字(建议复制)FDDB

数据集Caltech-10K-WebFaces

10k+人脸,提供双眼和嘴巴的坐标位置

官网地址

 http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/#Description 

关键字(建议复制)Caltech-10K

数据集JAFFE

该数据库是由10位日本女性在实验环境下根据指示做出各种表情。整个数据库一共有213张图像,10个人,全部都是女性,每个人做出7种表情。

官网地址

http://www.kasrl.org/jaffe.html

关键字(建议复制)JAFFE

数据集AFLW

前2000个AFLW样本的拟合3D面,可用于3D面对齐评估。

官网地址

http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm

关键字(建议复制)AFLW

通过搜索“AI技术研究与分享”关注公众号,并在后台回复各数据集关键字即可获取网盘链接。数据集文件均为官方网站下载,仅用于学习交流,博主会持续更新,欢迎关注。

更多分享,敬请期待!

已标记关键词 清除标记
<span style="color:#E53333;"><strong>告知:需要学习YOLOv4进行TT100K数据集上中国交通标志识别的学员请前往</strong></span><br /><br /><span style="color:#E53333;"><strong>(1) Ubuntu系统《YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29362</strong></span> <p> <span style="color:#E53333;"><strong>(2)《Windows版YOLOv4目标检测实战:中国交通标志识别》</strong></span><span style="color:#E53333;"><strong>课程链接:https://edu.csdn.net/course/detail/29363</strong></span><span style="color:#E53333;"><strong></strong></span> </p> <br /> 在无人驾驶中,交通标志识别是一项重要的任务。本课程中的项目以<strong><span style="color:#E53333;">美国交通标志数据集LISA</span></strong>为训练对象,采用<strong><span style="color:#E53333;">YOLOv3</span></strong>目标检测方法实现实时交通标志识别。<br /><br /> 具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。<br /><br /> YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入学习和探究。<br /><br /> 除本课程《YOLOv3目标检测实战:交通标志识别》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:<br /><br /> 《YOLOv3目标检测实战:训练自己的数据集》<br /><br /> 《YOLOv3目标检测:原理与源码解析》<br /><br /> 《YOLOv3目标检测:网络模型改进方法》<br /><br /> 另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。<br /><br /> 请大家关注以上课程,并选择学习。<br /><br /> 下图是使用YOLOv3进行交通标志识别的测试结果<br /><p> <br /></p> <p> <img alt="" src="https://img-bss.csdn.net/201905291412089927.jpg" /><img alt="" src="https://img-bss.csdn.net/201905291412336785.jpg" /><img alt="" src="https://img-bss.csdn.net/201905291412485752.jpg" /></p> <p> <img alt="" src="https://img-bss.csdn.net/201905291413012686.jpg" /></p>
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页