ubuntu16.04安装MATLAB R2017b步骤详解(附完整文件包)

MATLAB是美国MathWork公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。
 
 
博文已迁移至我的博客园:
 
提取码: bwjd
 
 

1. Matlab R2017B加强深度学习能力以简化设计、训练和部署模型

MATLAB Release 2017B (R2017B),新增了包括MATLAB和Simulink若干新功能、六款新产品以及对其他86款产品的更新和修复补丁。Matlab R2017B还添加了新的重要的深度学习功能,可简化工程师、研究人员及其他领域专家设计、训练和部署模型的方式。

随着智能设备和物联网的发展,设计团队面临创造更加智能的产品和应用的挑战,他们需要自己掌握深度学习技能或依赖其他具有深度学习专长但可能不了解应用场景的团队。借助R2017B,工程和系统集成团队可以将MATLAB拓展用于深度学习,以更好地保持对整个设计过程的控制,并更快地实现更高质量的设计。可以通过使用预训练网络,协作开发代码和模型,然后部署到GPU和嵌入式设备。使用MATLAB可以改进结果质量,同时通过自动化地面实况标记App来缩短模型开发时间。

图片

 

2. R2017B中的具体深度学习特性、产品和功能包括:

Neural Network Toolbox 增加了对复杂架构的支持,包括有向无环图(DAG)和长短期记忆(LSTM)网络,并提供对GoogLeNet等流行的预训练模型的访问。

Computer Vision System Toolbox中的Image Labeler应用现在提供一种方便和交互的方式来标记一系列图像中的地面实况数据。除对象检测工作流程外,该工具箱现在还利用深度学习支持语义分割,对图像中的像素区域进行分类,以及评估和可视化分割结果。

图片

 

3. MATLAB深度学习:为自动驾驶的工作流程提供语义分割

新产品GPU Coder可自动将深度学习模型转换为NVIDIA GPU的CUDA代码。内部基准测试显示,在部署阶段为深度学习模型产生的代码,比TensorFlow的性能提高7倍,比Caffe2的性能提高4.5倍。

注:使用TitanXP GPU和Intel(R) Xeon(R) CPU E5-1650 v4@3.60GHz对AlexNet的推理性能执行了内部基准测试。使用的软件版本是MATLAB(R2017B)、TensorFlow(1.2.0)和Caffe2(0.8.1)。每个软件的GPU加速版本用于基准测试。所有测试均在Windows 10上运行。

与R2017A推出的功能相结合,可以使用预训练模型进行迁移学习,包括卷积神经网络(CNN)模型(AlexNet、VGG-16和VGG-19)以及来自Caffe的模型(包括Caffe Model Zoo)。可以从头开始开发模型,包括使用CNN进行图像分类、对象检测、回归等。

图片

4. 其他系列更新

除深度学习外,R2017B还包括其他关键领域的一系列更新,包括:

使用MATLAB进行数据分析:一款新Text Analytics Toolbox产品、可扩展数据存储、用于机器学习的更多大数据绘图和算法,以及Microsoft Azure Blob存储支持

使用Simulink进行实时软件建模:对用于软件环境的调度效果进行建模并实现可插入式组件

使用Simulink进行验证和确认:用于需求建模、测试覆盖率分析和合规性检查的新工具

从MATLAB生成CUDA代码:从MATLAB代码生成用于深度学习和嵌入式视觉的CUDA 代码并在NVIDIA GPU上运行。

升级到最新版本,轻松实现代码兼容性报告、全项目升级和跨版本代码集成。

<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页